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Abstract

Let �n(t) denote the weighted (smooth) bootstrap process of an empirical process. We show that the order of the best
Gaussian approximation for �n(t) is n−1=2 log n and we construct a sequence of approximating Brownian bridges achieving
this rate. We also obtain an approximation for �n(t) using a suitably chosen Kiefer process. The result is applied to detect
a possible change in the distribution of independent observations. c© 2000 Elsevier Science B.V. All rights reserved
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1. Approximations for empirical and resampled processes

Let X1; X2; : : : be a sequence of independent, identically distributed random variables with common distri-
bution function F . The empirical distribution of X1; X2; : : : ; Xn is de�ned as

Fn(t) =
1
n

∑
16i6n

I{Xi6t}; −∞¡t¡∞:

It is well-known that the empirical process �n(t) = n1=2(Fn(t) − F(t)) converges in D[−∞;∞] to B(F(t)),
where {B(t), 06t61} stands for a Brownian bridge. The rate of convergence of �n(t) to B(F(t)) is an
important question in statistics as well as in probability and it was investigated by several authors. For a
survey we refer to Cs�orgő and R�ev�esz (1981). The best result is due to Koml�os et al. (1975):
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Theorem 1.1. There exists a sequence of Brownian bridges {Bn(t); 06t61} such that

P
{

sup
−∞¡t¡∞

|�n(t)− Bn(F(t))|¿n−1=2(c1log n+ x)
}
6c2 exp(−c3x)

for all x¿0; where c1; c2 and c3 are positive constants.

Koml�os et al. (1975) also showed that the rate in Theorem 1.1 is the best possible one.

Theorem 1.2. If F is continuous; then for any sequence of Brownian bridges {B∗n (t); 06t61} we have

lim
n→∞P

{
sup

−∞¡t¡∞
|�n(t)− B∗n (F(t))|¿ 1

6n
−1=2 log n

}
= 1:

Several statistical procedures, including kernel density estimation and procedures based on the empirical
characteristic function (see, e.g. Feuerverger and Mureika, 1977; Cs�orgő, 1981) can be described in terms
of the empirical process �n(t) with the limit distributions given as functionals of B(F(t)). Thus the limits
may depend on the unknown distribution F . The bootstrap is a widely used technique to approximate these
limiting distributions. For the bootstrapped version of Theorems 1.1 and 1.2 we refer to Cs�orgő et al. (1999)
and Horv�ath and Steinebach (1999). One of the possible drawbacks of Efron’s (1979) original bootstrap is
that some observations may be used more than once while others are not sampled at all. An alternative
is the weighted (or smooth) bootstrap, which has also been shown to be computationally more e�cient in
several applications. The Bayesian bootstrap of Rubin (1981) uses exponential weights. Lo (1987) obtained
approximations for �n(t) when �1 has an exponential distribution. Parzen et al. (1994) used standard normal
weights to estimate the variance of an estimator based on an estimating function. Burke (1997a,b, 1998)
utilizes standard normal weights to construct con�dence bands for functionals of multivariate observations.
For a survey of further results on weighted bootstrap we refer to Barbe and Bertail (1995) and Shao and Tu
(1996).
In this paper we study the asymptotic properties of the weighted bootstrap for the empirical process which

is de�ned as follows: Let �1; �2; : : : be a sequence of independent, identically distributed random variables with

E�1 = �; var �1 = 1 (1.1)

and

E exp(t�1)¡∞ if |t|6t0 with some t0¿ 0: (1.2)

We also assume that

{Xi; 16i¡∞} and {�i; 16i¡∞} are independent: (1.3)

The smooth bootstrap of �n is

�n(t) = n−1=2
∑
16i6n

(�i − ��n)I{Xi6t}; −∞¡t¡∞;

where

��n =
1
n

∑
16i6n

�i:

We note that �n(t) does not depend on �.
The main aim of this paper is to obtain the best possible approximation for �n(t). We prove that the

best possible rate is n−1=2 log n and our construction reaches this rate. Thus we have a complete analogue of
Theorems 1.1 and 1.2 for the smooth bootstrap.



L. Horv�ath et al. / Statistics & Probability Letters 48 (2000) 59–70 61

Theorem 1.3. If (1:1)–(1:3) hold; then there exists a sequence of Brownian bridges {B̂n(t); 06t61} such
that

P
{

sup
−∞¡t¡∞

|�n(t)− B̂n(F(t))|¿n−1=2(c4 log n+ x)
}
6c5 exp(−c6x)

for all x¿0; where c4; c5 and c6 are positive constants.

The next result shows that the rate in Theorem 1.3 is optimal.

Theorem 1.4. If F is continuous and (1:1)–(1:3) hold; then for any sequence of Brownian bridges {B∗n (t);
06t61} we have

lim
n→∞P

{
sup

−∞¡t¡∞
|�n(t)− B∗n (F(t))|¿c7n−1=2 log n

}
= 1

with some c7¿ 0.

Since a sequence of Brownian bridges is used in Theorem 1.3, it does not immediately imply strong laws
for �n(t). Also, in some applications we need �n(t) as a two-time parameter process of (t; n). The next result
gives an almost sure approximation for �n(t) based on a Kiefer process.

Theorem 1.5. There is a Kiefer process {K(t; x); 06t61; 06x6∞} such that

max
16k6n

sup
−∞¡t¡∞

∣∣∣∣∣
∑
16i6k

(�i − ��n)I{Xi6t} − K(F(t); k)
∣∣∣∣∣ a:s:= O(n1=4(log n)1=2):

The proofs are given in Section 3. First we show how the weighted bootstrap can be used in change-point
analysis.

2. An application to change-point detection

In this section we discuss one possible application of the results established in Section 1.
Let Y1; Y2; : : : ; Yn be independent random variables with distribution functions H(1)(t); H(2)(t); : : : ; H(n)(t).

We wish to test the null hypothesis

H0: H(1)(t) = H(2)(t) = · · ·= H(n)(t) for all t
against the alternative

Ha: there is k∗; 16k∗¡n such that H(1)(t)=· · ·=H(k∗)(t), H(k∗+1)(t)=· · ·=H(n)(t) for all t and H(k∗)(t0) 6=
H(k∗+1)(t0) with some t0.

Following Cs�orgő and Horv�ath (1997, p. 152) we divide the data into two subsets, before and after the kth
observation, and compute the corresponding empirical distribution functions

Hk(t) =
1
k

∑
16i6k

I{Yi6t} and H∗
k (t) =

1
n− k

∑
k¡i6n

I{Yi6t}:
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We reject H0, if

Rn = max
16k¡n

k(n− k)
n3=2

sup
−∞¡t¡∞

|Hk(t)− H∗
k (t)|

is large. Cs�orgő and Horv�ath (1997, p. 153) obtained the limit distribution of Rn under H0. Let H denote the
common distribution function under H0. If H0 holds, then

Rn
D→ sup
06x61

sup
−∞¡t¡∞

|�H (t; x)|; (2.1)

where {�H (t; x); 06x61; −∞¡t¡∞} is a Gaussian process with E�H (t; x) = 0 and E�H (t; x)�H (s; y) =
{H (min(t; s)) − H (t)H (s)}{min(x; y) − xy}. The distribution function of the limiting random variable is
unknown. We note that the distribution of sup06x61sup−∞¡t¡∞ |�H (t; x)| does not depend on H , if H is
continuous, but even in this case it is unknown. The Glivenko–Cantelli lemma yields that if Ha holds and
k∗ = [n�] with some 0¡�¡ 1, then

k∗(n− k∗)
n2

|Hk∗(t0)− H∗
k∗(t0)| P→ �(1− �)|H(k∗)(t0)− H(k∗+1)(t0)|;

and therefore

Rn
P→∞: (2.2)

We use the smooth bootstrap to approximate the distribution of Rn. Let �1; �2; : : : be independent identically
distributed random variables satisfying (1.1) and (1.2). De�ne

r(t; k) =
∑
16i6k

(�i − ��k) I{Yi6t}

and

r∗(t; k) =
∑
k¡i6n

(�i − �� ∗k )I{Yi6t}

with

��k =
1
k

∑
16i6k

�i and �� ∗k =
1

n− k
∑
k¡i6n

�i:

We show that Rn and

R∗n = n
−3=2 max

16k¡n
sup

−∞¡t¡∞
|(n− k)r(t; k)− kr∗(t; k)|

have the same limit distributions.

Theorem 2.1. We assume that (1:1) and (1:2) are satis�ed.
(i) If H0 holds; then

R∗n
D→ sup
06x61

sup
−∞¡t¡∞

|�H (t; x)|: (2.3)

(ii) If Ha holds; then

R∗n =OP(1): (2.4)

Theorem 2.1 is proved in Section 3.
In the remainder of this section we present the results of a small simulation study which compares the

critical values of Rn and R∗n for small n and a data example which illustrates the procedure.



L. Horv�ath et al. / Statistics & Probability Letters 48 (2000) 59–70 63

Table 1
Percentiles of Rn and R∗n under H0, n = 25

Distribution H Statistic 90.0% 95.0% 97.5% 99.0%

Gaussian Rn 0.66 0.72 0.76 0.83
R∗n 0.60 0.66 0.71 0.78

Uniform Rn 0.66 0.72 0.79 0.84
R∗n 0.61 0.68 0.73 0.79

Cauchy Rn 0.66 0.72 0.76 0.84
R∗n 0.60 0.66 0.72 0.77

Table 2
Percentiles of Rn and R∗n under H0, n = 50

Distribution H Statistic 90.0% 95.0% 97.5% 99.0%

Gaussian Rn 0.69 0.75 0.81 0.86
R∗n 0.66 0.72 0.79 0.85

Uniform Rn 0.69 0.74 0.80 0.87
R∗n 0.65 0.71 0.75 0.80

Cauchy Rn 0.69 0.74 0.81 0.87
R∗n 0.65 0.71 0.77 0.83

Tables 1 and 2 exhibit percentiles of the simulated values of Rn and R∗n for n = 25 and n = 50. The
simulations were done assuming that H0 is true. Three underlying distributions H were considered: standard
Gaussian, standard uniform and standard Cauchy. At least N=2,500 repetitions were used for each entry.
For each replication of Rn a new sample from H was generated. To obtain the R∗n ’s, one “original” sample
from H was generated, and based on it, N Gaussian bootstrap samples (i.e. with standard normal �i’s) were
simulated.
The critical values of R∗n appear to be acceptable approximations of the critical values of Rn for n¿50,

even though they are systematically smaller. The approximation is worse if standard normal �i’s are replaced
by standard exponential or normalized uniform weights.
We note that for small n the distributions of Rn and R∗n look very di�erent, even though they have similar

quantiles. In both panels of Fig. 1, H is standard Gaussian, n= 25 (N = 5; 000 replications were used).
The di�erence is due to the absence of the smoothing e�ect of the �i in the de�nition of Rn (standard

normal �i’s were used in the right panel).

2.1. A data example

We consider the spontaneous abortion data studied by Levin and Kline (1985). The data consist of 265 units
comprising four karyotyped aborted conceptions. Each conception falls into one of �ve disjoint groups. The
groups correspond to di�erent chromosomal characteristics. The units roughly correspond to weeks, since, on
average, four karyotyping procedures per week yielded conclusive results. We focus here on trisomic abortions,
because for them the analysis of Levin and Kline is somewhat inconclusive. Using a CUSUM test, they test if
during the period of time corresponding to the 265 units there has been a change in the proportion of trisomic
abortions. Assuming binomial distribution, they obtain the P-value of 0.14. On the other hand, their test has
power of only 0.39 against the likely alternative of a two-fold increase in the proportion of trisomic abortions
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Fig. 1. Histograms of Rn (left) and R∗n under H0, n = 25.

Fig. 2. Number of trisomic abortions per unit.

over a time span of 20 units. Using a test based on local polynomial smoothing, Horv�ath and Kokoszka
(1998) obtained asymptotic P-value smaller than 0.025. The trisomic abortions data are displayed in Fig. 2,
which shows that the detection of a possible change in distribution is a challenging problem.
We used Theorem 2.1 to compute the P-value for the test of the null hypothesis that there has been no

change in the proportion of trisomic abortions. The mean of the data is 0.883, so we assumed that under the
null hypothesis, the data come from the binomial distribution with p = 0:22 (the value of p does not e�ect
the results). We generated a random sample of size n= 265 (the number of units) from this distribution and
then repeating the Gaussian smooth bootstrap N = 1000 times we obtained R∗n;1; : : : ; R

∗
n;N and used

LN (x) =
1
N

∑
16j6N

I{R∗n; j6x}

to approximate the distribution of Rn. The proportion of the R∗n; j which were greater than the observed value
of Rn was 0.034, which is our estimate of the P-value.
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Fig. 3. Analysis of the abortion data.

For comparison, we simulated N = 500 samples of length n = 265 from the binomial distribution with
p = 0:22 and computed 500 values of Rn. The proportion of the Rn which were greater than the observed
value of Rn was 0.016, which indicates that the test based on Gaussian bootstrap is fairly accurate.
According to Theorem 2.1, if zN (1−�) denotes the 1−� quantile of LN (x), then by (2.1) and (2.3) we have

P{Rn6zN (1−�)}→ 1−� as n; N→∞ under H0. If Ha holds, then (2.2) and (2.4) yield P{Rn6zN (1−�)}→ 0
as n; N→∞, so the test is consistent. This is illustrated in Fig. 3, where the continuous line shows the
estimated density of R∗n under the null described above, whereas the dotted line shows the estimated distribution
of Rn under the alternative of the twofold increase of p over twenty units. The vertical line indicates the
observed value of Rn.

3. Proofs

We can assume that � = 0.

Proof of Theorem 1.3. First we can write∑
16i6n

(�i − ��n) I{Xi6t}=
∑
16i6n

�iI{Xi6t} − F(t)
∑
16i6n

�i + (F(t)− Fn(t))
∑
16i6n

�i: (3.1)

By the inequality of Dvoretzky et al. (1956) we have that

P
{

sup
−∞¡t¡∞

|Fn(t)− F(t)|¿n−1=2x1=2
}
6c8 exp (−2x) (3.2)

for all x¿0 with some constant c8. Using Petrov (1995, p. 55) there are constants c9; : : : ; c13 such that

P

{∣∣∣∣∣
∑
16i6n

�i

∣∣∣∣∣¿ (xn)1=2
}
6c9 exp (−c10x) (3.3)

for all 06x6c11n and

P

{∣∣∣∣∣
∑
16i6n

�i

∣∣∣∣∣¿x
}
6c12 exp (−c13x); (3.4)
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if c11n6x¡∞. If 06x6c11n, then we use (3.2) and (3.3) and if c11n6x¡∞, then we apply (3.4) and
the observation that supt |Fn(t)− F(t)|61 to obtain

P
{

sup
−∞¡t¡∞

∣∣∣(Fn(t)− F(t)) ∑
16i6n

�i
∣∣∣¿x

}
6c14 exp (−c15x) (3.5)

for all x¿0. Horv�ath (2000) constructed a sequence of Wiener processes {Wn(t); 06t ¡∞} such that
P
{

sup
−∞¡t¡∞

∣∣∣n−1=2 ∑
16i6n

�iI{Xi6t} −Wn(F(t))
∣∣∣¿n−1=2(c16 log n+ x)

}
6c17 exp(−c18x) (3.6)

for all x¿0, and therefore

P
{

sup
−∞¡t¡∞

∣∣∣n−1=2
( ∑
16i6n

�iI{Xi6t} − F(t)
∑
16i6n

�i

)
− (Wn(F(t))− F(t)Wn(1))

∣∣∣
¿ 2n−1=2(c16 log n+ x)

}
6 c17 exp (−c18x): (3.7)

Observing that Bn(t) = Wn(t) − tWn(1) are Brownian bridges, Theorem 1.3 follows from (3.1), (3.5) and
(3.7).

Proof of Theorem 1.4. We can assume without loss of generality that F(t)= t; 06t61. Let {N (t); 06t ¡∞}
be a homogeneous Poisson process with intensity parameter 1, independent of {�i; 16i¡∞}. The times of
the jumps of N (t) are 0 = S(0)¡S(1)¡ · · ·. It is well-known that

{nFn(t); 06t61} D={N (tS(n+ 1)); 06t61}
and therefore{ ∑

16i6n

�iI{Xi6t}; 06t61
}

D= {U (N (tS(n+ 1))); 06t61} ; (3.8)

where

U (k) =
∑
16i6k

�i:

Let z(i; n)= i=S(n+1); 06i6n, and a(n)= [c log[n1=3]]=S(n+1), where [x] denotes the integer part of x. By
(3.8) there are random variables �(i; n); 06i6n, and h(n) such that{ ∑

16i6n

�iI{Xi6t}; 06t61; �(i; n); 06i6n; h(n)
}

D={U (N (tS(n+ 1))); 06t61; z(i; n); 06i6n; a(n)}: (3.9)

It follows from the Erdős and R�enyi (1970) law of large numbers that for any c¿ 0

1
[c log[n1=3]]

max
06i6[n1=3]

(U (N ((z(i; n) + a(n))S(n+ 1))− U (N (z(i; n)S(n+ 1)))

=
1

[c log[n1=3]]
max

06i6[n1=3]
(U (N (i + [c log[n1=3]]))− U (N (i)))

a:s:→ �∗(c) as n→ ∞: (3.10)
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Erdős and R�enyi (1970) also showed that there is a one-to-one correspondence between the function �∗(c)
and the moment generating function of U (N (1)). Putting together (3.1), (3.5), (3.9) and (3.10) we get that

n1=2

[c log[n1=3]]
max

06i6[n1=3]
(�n(�(i; n) + h(n))− �n(�(i; n))) P→ �∗(c) (3.11)

for all c¿ 0. Let {B(t); 06t61} be a Brownian bridge. We can de�ne a Brownian bridge {B̂(t); 06t61}
such that

{B(t); 06t61; �(i; n); 06i6n; h(n)} D={B̂(t); 06t61; z(i; n); 06i6n; a(n)}: (3.12)

There is a Wiener process {Ŵ (t); 06t61} such that B̂(t) = Ŵ (t)− tŴ (1); 06t61. Hence
n1=2

[c log[n1=3]]
max

06i6[n1=3]
(B̂(z(i; n) + a(n))− B̂(z(i; n)))

=
n1=2

[c log[n1=3]]
max

06i6[n1=3]
(Ŵ (z(i; n) + a(n))− Ŵ (z(i; n))) + oP(1): (3.13)

By the law of the iterated logarithm we have that |S(n+1)−n| a:s:= O((n log log n)1=2) and therefore, by Theorem
1:2:1 of Cs�orgő and R�ev�esz (1981),

n1=2

[c log[n1=3]]
max

06i6[n1=3]
(Ŵ (z(i; n) + a(n))− Ŵ (z(i; n)))

=
n1=2

[c log[n1=3]]
max

06i6[n1=3]

(
Ŵ
(
i
n
+
[c log[n1=3]]

n

)
− Ŵ

(
i
n

))
+ oP(1): (3.14)

The scale transformation of Ŵ yields that

n1=2

[c log[n1=3]]
max

06i6[n1=3]

(
Ŵ
(
i
n
+
[c log[n1=3]]

n

)
− Ŵ

(
i
n

))

D=
1

[c log[n1=3]]
max

06i6[n1=3]
(Ŵ (i + [c log[n1=3]])− Ŵ (i)): (3.15)

Using again Erdős and R�enyi (1970) we obtain that

1
[c log[n1=3]]

max
06i6[n1=3]

(Ŵ (i + [c log[n1=3]])− Ŵ (i)) a:s:→
(
2
c

)1=2
: (3.16)

Putting together (3.12)–(3.16) we conclude that for any Brownian bridge {B(t); 06t61}
n1=2

[c log[n1=3]]
max

06i6[n1=3]
(B(�(i; n) + h(n))− B(�(i; n))) P→

(
2
c

)1=2
(3.17)

for all c¿ 0. If m(t) denotes the moment generating function of �1, then the moment generating function of
U (N (1)) is exp (m(t) − 1). It is easy to see that exp(m(t) − 1) cannot be the moment generating function
of a normal random variable. Since there is a one-to-one correspondence between the Erdős–R�enyi limits
and moment generating functions, there is c∗¿ 0 such that �∗(c∗) 6=(2=c∗)1=2. If F(t) = t, then Theorem 1.4
follows from (3.11) and (3.17) with some c7¿c∗|�∗(c∗) − (2=c∗)1=2|. Since F(t) is continuous, the case of
uniformly distributed X1; X2; : : : implies the general result.
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Proof of Theorem 1.5. By Theorem 2:2 in Horv�ath (2000) there is a two-time parameter Wiener process
{W (t; x); 06t; x¡∞} such that

sup
−∞¡t¡∞

∣∣∣∣∣
∑
16i6n

�iI{Xi6t} −W (F(t); n)
∣∣∣∣∣ a:s:= O(n1=4(log n)1=2): (3.18)

By (3.1) and (3.5) we have

sup
−∞¡t¡∞

∣∣∣∣∣n1=2�n(t)−
( ∑
16i6n

�iI{Xi6t} − F(t)
∑
16i6n

�i

)∣∣∣∣∣ a:s:= O(log n);
and therefore (3.18) implies

sup
−∞¡t¡∞

|n1=2�n(t)− (W (F(t); n)− F(t)W (1; n))| a:s:= O(n1=4(log n)1=2):

Observing that K(t; x) =W (t; x)− tW (1; x) is a Kiefer process, the proof of Theorem 1.5 is complete.

Proof of Theorem 2.1. If H0 holds, then we can write

r(t; n)− r(t; k) = r∗(t; k) + ��∗k
∑
k¡i6n

(I{Yi6t} − H (t)) + ��
∑
16i6k

(I{Yi6t} − H (t))

− ��n
∑
16i6n

(I{Yi6t} − H (t)):

By the law of the iterated logarithm we have

max
16k¡n

∣∣∣∣∣ ��∗k
∑
k¡i6n

(I{Yi6t} − H (t))
∣∣∣∣∣ 6 max

16k¡n

1
(n− k)1=2

∣∣∣∣∣
∑
k¡i6n

�i

∣∣∣∣∣ max16k¡n

1
(n− k)1=2

× sup
−∞¡t¡∞

∣∣∣∣∣
∑
k¡i6n

(I{Yi6t} − H (t))
∣∣∣∣∣

=OP(log log n)

and similarly

max
16k¡n

∣∣∣∣∣ ��k
∑
16i6k

(I{Yi6t} − H (t))
∣∣∣∣∣=OP(log log n):

The central limit theorem and the weak convergence of the empirical process imply

sup
−∞¡t¡∞

∣∣∣∣∣ ��n
∑
16i6n

(I{Yi6t} − H (t))
∣∣∣∣∣=OP(1):

Hence by Theorem 1.5 there is a Kiefer process {K∗(t; x); 06t61; 06x¡∞} such that
n−3=2 max

16k¡n
|(n− k)r(t; k)− kr∗(t; k)− {(n− k)K∗(H (t); k)− k(K∗(H (t); n)− K∗(H (t); k))}|

=OP(n−1=4(log n)1=2):

Let

�H (t; x) = n−1=2{K∗(H (t); nx)− xK∗(H (t); n)}:
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If is easy to check that E�H (t; x) = 0; E�H (t; x)�H (s; y) = (H (min(t; s))− H (t)H (s))(min(x; y)− xy). Also,
the modulus of continuity of Kiefer processes (cf. Cs�orgő and R�ev�esz, 1981) gives

max
06k6n

sup
|s|61=n

sup
−∞¡t¡∞

∣∣∣∣�H
(
t;
k
n

)
− �H

(
t;
k
n
+ s
)∣∣∣∣=OP(n−1=2(log n)1=2);

which completes the proof of (2.3). To prove (2.4) �rst we note that by Theorem 1.5

n−3=2 max
16k6k∗

sup
−∞¡t¡∞

|(n− k)r(t; k)|=OP(1):

Next we write for all 16k6k∗

r∗(t; k) =
∑

k¡i6k∗
�iI{Yi6t}+

∑
k∗¡i6n

�iI{Yi6t} − ��∗k
∑
k¡i6n

I{Yi6t}:

Since Y1; : : : ; Yk∗ are identically distributed, (3.18) yields

max
16k6k∗

sup
−∞¡t¡∞

∣∣∣∣∣
∑

k¡i6k∗
�iI{Yi6t}

∣∣∣∣∣=OP(n1=2)
and similarly the weak convergence of partial sums gives

max
16k6k∗

∣∣∣∣∣ ��∗k
∑
k¡i6n

I{Yi6t}
∣∣∣∣∣6 max

16k6k∗

∣∣∣∣∣
∑
k¡i6n

�i

∣∣∣∣∣=OP(n1=2):
Thus we get

n−3=2 max
16k6k∗

sup
−∞¡t¡∞

|(n− k)r(t; k)− kr∗(t; k)|=OP(1)

which completes the proof of (2.4).
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